Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Biotechnol ; 384: 12-19, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373531

RESUMO

Nitriles have a wide range of uses as building blocks, solvents, and alternative fuels, but also as intermediates and components of flavors and fragrances. The enzymatic synthesis of nitriles by aldoxime dehydratase (Oxd) is an emerging process with significant advantages over conventional approaches. Here we focus on the immobilization of His-tagged Oxds on metal affinity resins, an approach that has not been used previously for these enzymes. The potential of the immobilized Oxd was demonstrated for the synthesis of phenylacetonitrile (PAN) and E-cinnamonitrile, compounds applicable in the fragrance industry. A comparison of Talon and Ni-NTA resins showed that Ni-NTA with its higher binding capacity was more suitable for the immobilization of Oxd. Immobilized Oxds were prepared from purified enzymes (OxdFv from Fusarium vanettenii and OxdBr1 from Bradyrhizobium sp.) or the corresponding cell-free extracts. The immobilization of cell-free extracts reduced time and cost of the catalyst production. The immobilized OxdBr1 was superior in terms of recyclability (22 cycles) in the synthesis of PAN from 15 mM E/Z-phenylacetaldoxime at pH 7.0 and 30 °C (100% conversion, 61% isolated yield after product purification). The volumetric and catalyst productivity was 10.5 g/L/h and 48.3 g/g of immobilized protein, respectively.


Assuntos
Hidroliases , Odorantes , Hidroliases/metabolismo , Nitrilas/metabolismo , Oximas/química , Oximas/metabolismo , Enzimas Imobilizadas
2.
Biomolecules ; 13(5)2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238587

RESUMO

Lignins are the most abundant biopolymers that consist of aromatic units. Lignins are obtained by fractionation of lignocellulose in the form of "technical lignins". The depolymerization (conversion) of lignin and the treatment of depolymerized lignin are challenging processes due to the complexity and resistance of lignins. Progress toward mild work-up of lignins has been discussed in numerous reviews. The next step in the valorization of lignin is the conversion of lignin-based monomers, which are limited in number, into a wider range of bulk and fine chemicals. These reactions may need chemicals, catalysts, solvents, or energy from fossil resources. This is counterintuitive to green, sustainable chemistry. Therefore, in this review, we focus on biocatalyzed reactions of lignin monomers, e.g., vanillin, vanillic acid, syringaldehyde, guaiacols, (iso)eugenol, ferulic acid, p-coumaric acid, and alkylphenols. For each monomer, its production from lignin or lignocellulose is summarized, and, mainly, its biotransformations that provide useful chemicals are discussed. The technological maturity of these processes is characterized based on, e.g., scale, volumetric productivities, or isolated yields. The biocatalyzed reactions are compared with their chemically catalyzed counterparts if the latter are available.


Assuntos
Lignina , Fenóis , Lignina/química , Fenóis/química , Solventes/química , Catálise
3.
Enzyme Microb Technol ; 164: 110187, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610228

RESUMO

The aim of this work was to map the sequence space of aldoxime dehydratases (Oxds) as enzymes with great potential for nitrile synthesis. Microbes contain an abundance of putative Oxds but fewer than ten Oxds were characterized in total and only two in fungi. In this work, we prepared and characterized a new Oxd (protein gb|EEU37245.1 named OxdFv) from Fusarium vanettenii 77-13-4. OxdFv is distant from the characterized Oxds with a maximum of 36% identity. Moreover, the canonical Oxd catalytic triad RSH is replaced by R141-E187-E303 in OxdFv. R141A and E187A mutants did not show significant activities, but mutant E303A showed a comparable activity as the wild-type enzyme. According to native mass spectrometry, OxdFv contained almost 1 mol of heme per 1 mol of protein, and was composed of approximately 88% monomer (41.8 kDa) and 12% dimer. A major advantage of this enzyme is its considerable activity under aerobic conditions (25.0 ± 4.3 U/mg for E,Z-phenylacetaldoxime at pH 9.0 and 55 °C). Addition of sodium dithionite (reducing agent) and Fe2+ was required for this activity. OxdFv favored (aryl)aliphatic aldoximes over aromatic aldoximes. Substrate docking in the homology model of OxdFv showed a similar substrate specificity. We conclude that OxdFv is the first characterized Oxd of the REE type.


Assuntos
Fusarium , Fusarium/genética , Hidroliases/genética , Hidroliases/metabolismo , Catálise , Oximas/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408822

RESUMO

Laccases (Lac) and tyrosinases (TYR) are mild oxidants with a great potential in research and industry. In this work, we review recent advances in their use in organic synthesis. We summarize recent examples of Lac-catalyzed oxidation, homocoupling and heterocoupling, and TYR-catalyzed ortho-hydroxylation of phenols. We highlight the combination of Lac and TYR with other enzymes or chemical catalysts. We also point out the biological and pharmaceutical potential of the products, such as dimers of piceid, lignols, isorhamnetin, rutin, caffeic acid, 4-hydroxychalcones, thiols, hybrid antibiotics, benzimidazoles, benzothiazoles, pyrimidine derivatives, hydroxytyrosols, alkylcatechols, halocatechols, or dihydrocaffeoyl esters, etc. These products include radical scavengers; antibacterial, antiviral, and antitumor compounds; and building blocks for bioactive compounds and drugs. We summarize the available enzyme sources and discuss the scalability of their use in organic synthesis. In conclusion, we assume that the intensive use of laccases and tyrosinases in organic synthesis will yield new bioactive compounds and, in the long-term, reduce the environmental impact of industrial organic chemistry.


Assuntos
Lacase , Monofenol Mono-Oxigenase , Técnicas de Química Sintética , Lacase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredução , Fenóis/química
5.
Microorganisms ; 10(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35336124

RESUMO

In plants, aldoximes per se act as defense compounds and are precursors of complex defense compounds such as cyanogenic glucosides and glucosinolates. Bacteria rarely produce aldoximes, but some are able to transform them by aldoxime dehydratase (Oxd), followed by nitrilase (NLase) or nitrile hydratase (NHase) catalyzed transformations. Oxds are often encoded together with NLases or NHases in a single operon, forming the aldoxime-nitrile pathway. Previous reviews have largely focused on the use of Oxds and NLases or NHases in organic synthesis. In contrast, the focus of this review is on the contribution of these enzymes to plant-bacteria interactions. Therefore, we summarize the substrate specificities of the enzymes for plant compounds. We also analyze the taxonomic and ecological distribution of the enzymes. In addition, we discuss their importance in selected plant symbionts. The data show that Oxds, NLases, and NHases are abundant in Actinobacteria and Proteobacteria. The enzymes seem to be important for breaking through plant defenses and utilizing oximes or nitriles as nutrients. They may also contribute, e.g., to the synthesis of the phytohormone indole-3-acetic acid. We conclude that the bacterial and plant metabolism of aldoximes and nitriles may interfere in several ways. However, further in vitro and in vivo studies are needed to better understand this underexplored aspect of plant-bacteria interactions.

6.
Molecules ; 25(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854275

RESUMO

Fungi contain many plant-nitrilase (NLase) homologues according to database searches. In this study, enzymes NitTv1 from Trametes versicolor and NitAb from Agaricus bisporus were purified and characterized as the representatives of this type of fungal NLase. Both enzymes were slightly more similar to NIT4 type than to NIT1/NIT2/NIT3 type of plant NLases in terms of their amino acid sequences. Expression of the synthetic genes in Escherichia coli Origami B (DE3) was induced with 0.02 mM isopropyl ß-D-1-thiogalactopyranoside at 20 °C. Purification of NitTv1 and NitAb by cobalt affinity chromatography gave ca. 6.6 mg and 9.6 mg of protein per 100 mL of culture medium, respectively. Their activities were determined with 25 mM of nitriles in 50 mM Tris/HCl buffer, pH 8.0, at 30 °C. NitTv1 and NitAb transformed ß-cyano-L-alanine (ß-CA) with the highest specific activities (ca. 132 and 40 U mg-1, respectively) similar to plant NLase NIT4. ß-CA was transformed into Asn and Asp as in NIT4 but at lower Asn:Asp ratios. The fungal NLases also exhibited significant activities for (aryl)aliphatic nitriles such as 3-phenylpropionitrile, cinnamonitrile and fumaronitrile (substrates of NLase NIT1). NitTv1 was more stable than NitAb (at pH 5-9 vs. pH 5-7). These NLases may participate in plant-fungus interactions by detoxifying plant nitriles and/or producing plant hormones. Their homology models elucidated the molecular interactions with various nitriles in their active sites.


Assuntos
Agaricus , Aminoidrolases , Proteínas Fúngicas , Filogenia , Agaricus/enzimologia , Agaricus/genética , Aminoidrolases/genética , Aminoidrolases/metabolismo , Asparagina/genética , Asparagina/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Polyporaceae/enzimologia , Polyporaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...